

Mark Scheme (Results)

January 2013

GCE Chemistry (6CH01) Paper 01 The Core Principles of Chemistry

#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <a href="https://www.edexcel.com/teachingservices">www.edexcel.com/teachingservices</a>.

You can also use our online Ask the Expert service at <a href="www.edexcel.com/ask">www.edexcel.com/ask</a>. You will need an Edexcel username and password to access this service.

#### Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
  - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
  - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
  - iii) organise information clearly and coherently, using specialist vocabulary when appropriate

#### Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

( ) means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

### **Quality of Written Communication**

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

# Section A (multiple choice)

| Question<br>Number | Correct Answer | Mark |
|--------------------|----------------|------|
| 1                  | D              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 2                  | A              | 1    |
|                    |                | ,    |
| Question<br>Number | Correct Answer | Mark |
| 3                  | D              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 4                  | В              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 5                  | D              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 6                  | A              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 7                  | С              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 8                  | В              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 9                  | A              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 10                 | A              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 11                 | С              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 12                 | D              | 1    |
|                    |                |      |
| Question<br>Number | Correct Answer | Mark |
| 13                 | С              | 1    |
|                    |                |      |

| Question<br>Number | Correct Answer | Mark |
|--------------------|----------------|------|
| 14                 | С              | 1    |

| Question<br>Number | Correct Answer | Mark |
|--------------------|----------------|------|
| 15                 | C              | 1    |

| Question | Correct Answer | Mark |
|----------|----------------|------|
| Number   |                |      |
| 16(a)    | D              | 1    |
| (b)      | D              | 1    |
| (c)      | С              | 1    |
| (d)      | В              | 1    |
| (e)      | В              | 1    |

## **TOTAL FOR SECTION A = 20 MARKS**

## **Section B**

| Question      | Acceptable Answers                                                           | Reject                             | Mark |
|---------------|------------------------------------------------------------------------------|------------------------------------|------|
| Number        |                                                                              |                                    |      |
| 17 (a)<br>(i) | $2AI(s) + 2OH^{-}(aq) + 2H_{2}O(I) \rightarrow 2AIO_{2}^{-}(aq) + 3H_{2}(g)$ | 20 <sub>2</sub> <sup>2-</sup> (aq) | 1    |

| Question      | Acceptable Answers                      | Reject | Mark |
|---------------|-----------------------------------------|--------|------|
| Number        |                                         |        |      |
| 17<br>(a)(ii) | $2 \times 10 = 0.02 / 2 \times 10^{-2}$ |        | 1    |
|               | 1000                                    |        |      |
|               | Ignore trailing zeroes                  |        |      |

| Question<br>Number | Acceptable Answers                                   | Reject | Mark |
|--------------------|------------------------------------------------------|--------|------|
| 17<br>(a)(iii)     | 0.02 / 2 x 10 <sup>-2</sup> Accept TE answer to (ii) |        | 1    |
|                    |                                                      |        |      |

| Question       | Acceptable Answers                                                                      | Reject        | Mark |
|----------------|-----------------------------------------------------------------------------------------|---------------|------|
| Number         |                                                                                         |               |      |
| 17<br>(a) (iv) | $0.02 \times 27.0 = 0.54 / 5.4 \times 10^{-1}$ (g)<br>TE answer to (iii) OR (ii) x 27.0 | Other<br>unit | 1    |
|                | Ignore sf except 1                                                                      |               |      |

| Question<br>Number | Acceptable Answers                                       | Reject | Mark |
|--------------------|----------------------------------------------------------|--------|------|
| 17                 | $(1.1 \times 0.54) = 0.59(4) / 5.9(4) \times 10^{-1}(g)$ |        | 1    |
| (a)(v)             | TE answer to (iv) x 1.1                                  |        |      |
|                    | Ignore sf except 1                                       |        |      |
|                    | Only penalise sf once                                    |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                                |                  | Reject                                                                          | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|------|
| 17<br>(a) (vi)     | Potassium hydroxide / KOH (solution) corrosive / burns / caustic  OR  KOH damages / harms / is harmful to / dissolves / reacts with skin / eye(s) | ) is             | Toxic,<br>carcinogenic,<br>alone or in<br>combination<br>with correct<br>answer | 2    |
|                    | OR                                                                                                                                                |                  |                                                                                 |      |
|                    | KOH in eye(s)                                                                                                                                     | (1)              |                                                                                 |      |
|                    | Ignore Harmful, irritant, highly reactive alone                                                                                                   |                  |                                                                                 |      |
|                    | <b>Hydrogen / H<sub>2</sub></b> is flammable / explodes explosive                                                                                 | /<br><b>(1)</b>  | Burns alone                                                                     |      |
|                    | Allow mention of both potassium hydroxi and hydrogen alone scores                                                                                 | de<br><b>(1)</b> | Additional chemicals                                                            |      |
|                    | Allow Al foil can cut your skin                                                                                                                   | (1)              |                                                                                 |      |
|                    | Correct answer with additional incorrect chemistry e.g. KOH is oxidising so corros scores (0)                                                     | ive              |                                                                                 |      |

| Question<br>Number | Acceptable Answers                                                 | Reject | Mark |
|--------------------|--------------------------------------------------------------------|--------|------|
| 17<br>(b)(i)       | $KAIO_2(aq) + 2H_2SO_4(aq) \rightarrow KAI(SO_4)_2(aq) + 2H_2O(I)$ |        | 1    |
|                    | Allow multiples                                                    |        |      |

| Question      | Acceptable Answers                                                                                                       | Reject | Mark |
|---------------|--------------------------------------------------------------------------------------------------------------------------|--------|------|
| Number        |                                                                                                                          |        |      |
| 17<br>(b)(ii) | 2 x 1000 x 0.02 = 40 (cm <sup>3</sup> )  1  Allow 0.04(0) dm <sup>3</sup> TE answer to (a)(ii) x 2000 and TE from (b)(i) |        | 1    |

| Question<br>Number | Acceptable Answers                                                                                     |       | Reject | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------|-------|--------|------|
| 17<br>(b)(iii)     | Litmus (paper / solution)                                                                              | (1)   |        | 2    |
| () ()              | Red / pink (in acid)                                                                                   | (1)   |        |      |
|                    | OR                                                                                                     |       |        |      |
|                    | any other named acid-base indicator including universal indicator (1) with a correct acidic colour (1) |       |        |      |
|                    | NB phenolphthalein must be spelt correct to score (1) and no mark for colour                           | tly   |        |      |
|                    | Notice that other indicators only require recognisable spellings                                       |       |        |      |
|                    | Red litmus turns blue scores for the indic                                                             | cator |        |      |
|                    |                                                                                                        | (1)   |        |      |
|                    | OR                                                                                                     |       |        |      |
|                    | pH meter / universal indicator (1) with value < 7 (1)                                                  |       |        |      |
|                    | NB measure pH alone (0) pH < 7 (1)                                                                     |       |        |      |
|                    | OR                                                                                                     |       |        |      |
|                    | add a (metal) carbonate / suitable metal Mg (1) bubbles / fizzing (1)                                  | l eg  |        |      |
|                    | Calculation of amounts / moles of <b>both</b> reactants (1 maximum)                                    |       |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                                                            | Reject                                   | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|
| 17<br>(b)(iv)      | Each point must be made in full                                                                                                                                               |                                          | 4    |
|                    | The second and final scoring points, which are asterisked, can only be gained through these statements. Two further marks can be scored for any two of the other four points. |                                          |      |
|                    | 1 Filter (to remove any aluminium / impurities) (1)                                                                                                                           |                                          |      |
|                    | NB This mark can only be awarded if it is the first action <b>and</b> the mixture is subsequently heated.                                                                     |                                          |      |
|                    | 2 *Boil / heat / evaporate to reduce the volume of water (1)                                                                                                                  | Leave in the sun                         |      |
|                    | NB boil / heat to remove water only gets the mark if it is clear, subsequently, that some solution is left                                                                    | If boiled to dry<br>stop marking<br>here |      |
|                    | 3 Cool / set aside / leave to allow crystals to form (1)                                                                                                                      |                                          |      |
|                    | 4 Filter                                                                                                                                                                      |                                          |      |
|                    | OR                                                                                                                                                                            |                                          |      |
|                    | pick out / remove / take out crystals (to separate) (1)                                                                                                                       | Heat in oven                             |      |
|                    | 5 Wash with a little/cold water (1)                                                                                                                                           |                                          |      |
|                    | 6 *Place between filter papers / dab with paper towel / use dessicator (to dry) (1)                                                                                           |                                          |      |

|              | Acceptable Answers                      | Reject                    | Mark |
|--------------|-----------------------------------------|---------------------------|------|
| Number       |                                         |                           |      |
| 17<br>(b)(v) | White / colourless                      | Any other colours with or | 1    |
|              | Ignore clear / transparent / cloudy /   | without white             |      |
|              | opaque e.g. accept clear and colourless |                           |      |

| Question<br>Number | Acceptable Answers                                                                                                                            | Reject                                         | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| 17<br>(b) (vi)     | Cr <sup>3+</sup> / Fe <sup>3+</sup> / Sc <sup>3+</sup> / Ga <sup>3+</sup> Accept any feasible triply positive metal ion Allow B <sup>3+</sup> | Al <sup>3+</sup><br>and anything<br>else       | 1    |
|                    | Allow any name or symbol for a Group 3 element  Allow named existing transition metal ions with (III) after the name (if they exist)          | Group 3<br>element with<br>incorrect<br>charge |      |
|                    | Fully correct formula for an alum or intermediate starting entity  Eg KGa(SO <sub>4</sub> ) <sub>2</sub> / KGaO <sub>2</sub>                  |                                                |      |

|                    | <u></u>                                                                                                                            |        |      |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| Question<br>Number | Acceptable Answers                                                                                                                 | Reject | Mark |
| 18 (a)             | $[:Li]^{+}(1) \begin{pmatrix} xx \\ xx \mid xx \\ xx \end{pmatrix}$ $(1)$                                                          |        | 2    |
|                    | Accept all or mixture of dots and crosses                                                                                          |        |      |
|                    | Check inner electrons present on lithium                                                                                           |        |      |
|                    | If no element symbols but fully correct with Li first give 1 max                                                                   |        |      |
|                    | If no / incorrect charge(s) if the electrons are correct <b>1 max</b>                                                              |        |      |
|                    | If arrow drawn from third / outer shell electron on lithium to join electrons in iodine / iodide with correct charges scores 1 max |        |      |
|                    | Brackets are not essential                                                                                                         |        |      |

| Question<br>Number | Acceptable Answers                                                                                                                   |     | Reject | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------|
| 18 (b)             | Li(s) and Li <sup>+</sup> (g) and I <sup>-</sup> (g)                                                                                 | (1) |        | 3    |
|                    | 1/2 l <sub>2</sub> (s) <b>and</b> l(g)                                                                                               | (1) |        |      |
|                    | $(\Delta H_{at})[\mathcal{V}_2 _2(s)]$                                                                                               | (1) |        |      |
|                    | Notice the square brackets are essential for this mark                                                                               |     |        |      |
|                    | If wrong state for iodine element ie if $\frac{1}{2}I_2(g/I)$ and consistent $(\Delta H_{at})[\frac{1}{2}I_2(g/I)]$ allow third mark | ]   |        |      |
|                    | If I(s) given for element and $(\Delta H_{at})$ [I(s) allow third mark                                                               | s)] |        |      |
|                    | If wrong state with monatomic iodine both the last two marks lost                                                                    |     |        |      |
|                    | If Li <sup>+</sup> (g) + e appears ignore electron                                                                                   |     |        |      |

| Question<br>Number | Acceptable Answers                                                                                                              | Reject     | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|------|
| 18 (c)             | First mark for one of:                                                                                                          |            | 2    |
|                    | -270 = + 159 + 107 + 520 + electron affinity $- 759$                                                                            |            |      |
|                    | Or                                                                                                                              |            |      |
|                    | Electron affinity =                                                                                                             |            |      |
|                    | -270 - (159 + 520 + 107 - 759)<br>(1)                                                                                           |            |      |
|                    | OR Electron affinity =                                                                                                          |            |      |
|                    | -270 - 159 - 520 - 107 + 759 <b>(1)</b>                                                                                         |            |      |
|                    | Second mark for:                                                                                                                |            |      |
|                    | (Electron affinity =)                                                                                                           |            |      |
|                    | -297 (kJ mol <sup>-1</sup> ) <b>(1)</b>                                                                                         | Wrong unit |      |
|                    | -297 (kJ mol <sup>-1</sup> ) alone scores <b>(2)</b>                                                                            | e.g. J     |      |
|                    | NB providing method is recognisable with one transcription error eg 795 for 759 and the final answer is consistent <b>1 max</b> |            |      |
|                    | NB (+) 297 (kJ mol <sup>-1</sup> ) <b>1 max</b>                                                                                 |            |      |

| Question<br>Number | Acceptable Answers                                                                                                                | Reject                                            | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|
| 18 (d)             | (Experimental lattice energy is) more negative / exothermic (1)  OR  Theoretical lattice energy is less negative / exothermic (1) | Greater / less<br>Increase /<br>decrease<br>alone | 3    |
|                    | OR                                                                                                                                |                                                   |      |
|                    | Recognition that more energy released                                                                                             |                                                   |      |
|                    | (1)                                                                                                                               |                                                   |      |
|                    | Irrespective of first answer then, any two from:                                                                                  |                                                   |      |
|                    | Due to a degree of covalency (1)                                                                                                  |                                                   |      |
|                    | Deviation from pure ionic model (in experimental value)                                                                           |                                                   |      |
|                    | OR                                                                                                                                |                                                   |      |
|                    | The theoretical model is pure ionic bonding                                                                                       |                                                   |      |
|                    | (1)                                                                                                                               |                                                   |      |
|                    | Polarization / distortion of the iodide / negative ions (by the lithium ion). Can be shown by diagram (1)                         |                                                   |      |
|                    | Iodine/ I / I <sub>2</sub> ion is not acceptable but iodine / I <b>anion</b> is allowed                                           |                                                   |      |
|                    | Note I <sub>2</sub> anion is not allowed                                                                                          |                                                   |      |

| Question<br>Number | Acceptable Answers                                                                                  | Reject                                              | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
| 18 (e)             | Electron affinities become less negative / less exothermic / more positive (going down Group 7) (1) | Greater / less<br>/ Increase /<br>decrease<br>alone | 2    |
|                    | As (added) <b>electron</b> further from the nucleus  OR                                             | Any indication of ionization/ removing an electron  |      |
|                    | More shielding / shielded (from the nucleus)                                                        |                                                     |      |
|                    | (1)                                                                                                 |                                                     |      |
|                    | Second mark stands alone Ignore larger (ionic) radius / atom / ion / charge density                 |                                                     |      |

| Question<br>Number | Acceptable Answers                                                                                  | Reject                                   | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------|------|
| 19 (a)             | All have the same number of electrons / all have one (s) electron / same electron configuration (1) | All have one p electron                  | З    |
|                    | All have the same number of protons / all have one proton (1)                                       |                                          |      |
|                    | The first has no neutrons, the second one neutron and the third two neutrons                        | Different<br>number of<br>neutrons alone |      |
|                    | Allow deuterium has one more neutron, tritium two more neutrons (1)                                 | neutrons dione                           |      |
|                    | Ignore references to same atomic number and different mass numbers                                  |                                          |      |

| Question<br>Number | Acceptable Answers                                                                                                         | Reject | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|--------|------|
| 19 (b)             | $\binom{14}{1}N + \binom{1}{0}n \rightarrow \binom{5}{1}H + \binom{12}{6}C$<br>Numbers can be on either side or both sides |        | 1    |

| Question<br>Number | Acceptable Answers                                                 |     | Reject                   | Mark |
|--------------------|--------------------------------------------------------------------|-----|--------------------------|------|
| 19<br>(c)(i)       | Molar mass / M(r) / 3+2 / 2+3                                      |     |                          | 2    |
|                    | $= 5 (g \text{ mol}^{-1}) (1)$                                     |     |                          |      |
|                    | Number of moles = 4/5                                              |     |                          |      |
|                    | = 0.8 <b>(1)</b>                                                   |     | Penalise incorrect units |      |
|                    | O.8 with correct working, with wrong working, or with no working   | (2) |                          |      |
|                    | Allow internal TE if Molar mass clearly indicated and incorrect eg |     |                          |      |
|                    | Molar mass / $M(r) = 6 (g \text{ mol}^{-1})$ (0)                   |     |                          |      |
|                    | Number of moles = 4/6                                              |     |                          |      |
|                    | = 0.67 <b>(1)</b>                                                  |     |                          |      |

| Question<br>Number | Acceptable Answers                                            | Reject          | Mark |
|--------------------|---------------------------------------------------------------|-----------------|------|
| 19<br>(c)(ii)      | 24 000 x 0.8 = 19 200 (cm $^3$ )<br>Allow 19.2 <b>dm</b> $^3$ | Incorrect units | 1    |
|                    | Allow TE from (c)(i)                                          |                 |      |

| Question<br>Number | Acceptable Answers                                                                                        | Reject                 | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------|------------------------|------|
| 19 (d)             | 1.0078 x 99.9850 + 2.0141 x 0.0150<br>100<br>OR<br>1.0078 x 99.9850 + 2.0141 x 0.0150<br>99.9850 + 0.0150 |                        | 2    |
|                    | (1)                                                                                                       |                        |      |
|                    | Notice this working must be shown in full to score first mark.                                            |                        |      |
|                    | (= 1.007951)                                                                                              |                        |      |
|                    | = 1.0080 <b>(1)</b>                                                                                       |                        |      |
|                    | 1.008 max 1 with or without working                                                                       | Incorrect units e.g. g |      |
|                    | Correct answer no working (2)                                                                             |                        |      |
|                    | Only give second mark for correct answer to 4 decimal places                                              |                        |      |
|                    | Ignore g mol <sup>-1</sup>                                                                                |                        |      |

| Question<br>Number | Acceptable Answers                                                                              | Reject             | Mark |
|--------------------|-------------------------------------------------------------------------------------------------|--------------------|------|
| 19<br>(e)(i)       | Single arrow <b>upwards</b> from lowest line to infinity line (allow above or very close below) | More than one line | 1    |
|                    | Allow double headed arrow                                                                       |                    |      |

| 0             |                                                                                                        | 5                                              |      |
|---------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| Question      | Acceptable Answers                                                                                     | Reject                                         | Mark |
| Number        |                                                                                                        |                                                | 2    |
| 19<br>(e)(ii) | Hydrogen 1s <sup>1</sup>                                                                               |                                                | 2    |
|               | and                                                                                                    |                                                |      |
|               | Sodium $1s^2 2s^2 2p^6 3s^1$ (1)                                                                       | 1s <sup>2</sup> 2s <sup>1</sup>                |      |
|               | Electron numbers may be on lines or subscript.                                                         |                                                |      |
|               | Both have one (s) electron in the <b>outer</b> shell / orbital / sub shell                             | half filled s<br>outer shell                   |      |
|               | OR                                                                                                     |                                                |      |
|               | same number of electrons / same electron(ic) configuration in <b>outer</b> shell / orbital / sub shell | same<br>electron(ic)<br>configuration<br>alone |      |
|               | OR                                                                                                     |                                                |      |
|               | Both have an/one unpaired electron in their outer / last shell / orbital / sub shell (1)               |                                                |      |
|               | Second mark depends on one outer shell s electron shown for each electronic configuration              |                                                |      |

| Question<br>Number | Acceptable Answers                                                                       |                 | Reject             | Mark |
|--------------------|------------------------------------------------------------------------------------------|-----------------|--------------------|------|
| 19 (f)             | Helium                                                                                   | (1)             | Any other elements | 3    |
|                    | Any two from the following points:                                                       |                 |                    |      |
|                    | Electron removed is closest / close to the nucleus                                       | e<br><b>(1)</b> |                    |      |
|                    | Little shielding, allow no shielding                                                     | (1)             |                    |      |
|                    | More protons / higher nuclear charge the hydrogen. Allow higher effective nuclear charge |                 |                    |      |
|                    | <b>NB</b> second and third marks can be gaine <b>hydrogen</b> is given:                  | ed if           |                    |      |
|                    | Electron removed is close / closest to the nucleus                                       | e<br><b>(1)</b> |                    |      |
|                    | No shielding                                                                             | (1)             |                    |      |

| Question<br>Number | Acceptable Answers                                                                          | Reject    | Mark |
|--------------------|---------------------------------------------------------------------------------------------|-----------|------|
| 20(a)              | $C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$<br>Formulae and states (1) |           | 2    |
|                    | Balancing of correct entities (1)                                                           | Multiples |      |

| Question<br>Number | Acceptable Answers                                                                                 |          | Reject                       | Mark |
|--------------------|----------------------------------------------------------------------------------------------------|----------|------------------------------|------|
| 20(b)              | Notice the first mark is for the equation at there are 3 separate additional marks for calculation |          |                              | 4    |
|                    | нн нн                                                                                              |          |                              |      |
|                    |                                                                                                    |          |                              |      |
|                    | H-C-C-H + CI-CI → H-C-C-CI + H-CI                                                                  |          |                              |      |
|                    |                                                                                                    |          |                              |      |
|                    | нн н (1)                                                                                           |          |                              |      |
|                    | Check all bonds displayed especially CI-CI<br>H-CI                                                 | and      |                              |      |
|                    |                                                                                                    |          | Incorrect /<br>no sign and / |      |
|                    | Calculation marks:                                                                                 |          | or incorrect                 |      |
|                    | +413 + 243 <b>(1)</b> (-)(346 + 432) <b>(1)</b>                                                    |          | units                        |      |
|                    | OR 656 <b>(1)</b> (–) 778 <b>(1)</b>                                                               |          |                              |      |
|                    | $= -122 \text{ (kJ mol}^{-1}) (1)$                                                                 |          |                              |      |
|                    |                                                                                                    |          |                              |      |
|                    | Fully correct answer to calculation with n working                                                 | o<br>(3) |                              |      |
|                    | Extra 5x413 and 347 may be included on sides, giving 3068 and (-)3190                              | both     |                              |      |
|                    | Allow other same values(s) missing from sides                                                      | both     | la come et                   |      |
|                    | Bonds breaking                                                                                     | (1)      | Incorrect units loses        |      |
|                    | Bonds making                                                                                       | (1)      | this mark                    |      |
|                    | [Bonds breaking - bonds making] to give correct answer <b>with sign</b>                            | (1)      |                              |      |

| Question<br>Number | Acceptable Answers                                             |            | Reject                          | Mark |
|--------------------|----------------------------------------------------------------|------------|---------------------------------|------|
| 20<br>(c)(i)       | Initiation Allow homolysis / atomization / homolytic (fission) | <b>(1)</b> | Free radical substitution alone | 2    |
|                    | Ignore any reference to free radical substitution              |            | Photolysis                      |      |
|                    | UV / (sun)light                                                | (1)        |                                 |      |
|                    | Ignore reference to high temperature                           |            |                                 |      |

| Question<br>Number | Acceptable Answers                                                  | Reject | Mark |
|--------------------|---------------------------------------------------------------------|--------|------|
| 20                 | $CH_3CH_2 \bullet + CI-CI \rightarrow CH_3CH_2CI + CI \bullet$      |        | 3    |
| (c)(ii)            | OR                                                                  |        |      |
|                    | $CH_3CH_2 \bullet + CI-CI \rightarrow C_2H_5CI + CI \bullet$        |        |      |
|                    | Both products correct including dot (1)                             |        |      |
|                    | Two half headed arrows showing homolytic breaking of CI-CI bond (1) |        |      |
|                    | Half headed arrow from radical to pair with a Cl arrow              |        |      |
|                    | OR                                                                  |        |      |
|                    | One arrow from chlorine bond clearly to ethyl radical (1)           |        |      |
|                    | Arrows must be single-headed                                        |        |      |
|                    | CH3 CH2 · Ce Ce                                                     |        |      |
|                    | CH3 CH2 a cu                                                        |        |      |
|                    | CH3 CH2 · A & CA                                                    |        |      |
|                    | CH3CH2 CL = U                                                       |        |      |
|                    | The two dots in the covalent bond do not have to be shown           |        |      |

| Question<br>Number | Acceptable Answers                                                             | Reject                                                                                            | Mark |
|--------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|
| 20<br>(c)(iii)     | $Cl \cdot + Cl \cdot \rightarrow Cl_2$ (1)                                     |                                                                                                   | 2    |
|                    | $\bullet CH_2CH_3 + \bullet CH_2CH_3 \rightarrow CH_3CH_2CH_2CH_3 / C_4H_{10}$ | C <sub>4</sub> H <sub>12</sub><br>CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub> CH <sub>2</sub> |      |
|                    | (1)                                                                            | 0113011201130112                                                                                  |      |
|                    | $\bullet CH_2CH_3 + CI \bullet \rightarrow CH_3CH_2CI $ (1)                    |                                                                                                   |      |
|                    | Penalise missing dots once                                                     |                                                                                                   |      |
|                    | Allow •C <sub>2</sub> H <sub>5</sub> for •CH <sub>2</sub> CH <sub>3</sub>      |                                                                                                   |      |
|                    | Di and tri substitution steps                                                  |                                                                                                   |      |

| Question | Acceptable Answers                         | Reject | Mark |
|----------|--------------------------------------------|--------|------|
| Number   |                                            |        |      |
| 20 (d)   | $C_2H_6 \rightarrow C_2H_4 + H_2$          |        | 1    |
|          | Allow $2C_2H_6 \rightarrow C_2H_4 + 2CH_4$ |        |      |

| Question | Acceptable Answers                                                                                                           |                   | Reject                                                           | Mark |
|----------|------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------|------|
| Number   |                                                                                                                              |                   |                                                                  |      |
| 20 (e)   | Any two from:                                                                                                                |                   |                                                                  | 2    |
|          | (It) produces (more) petrol / gasoline / diesel / jet fuel / LPG / liquid petroleum / fuel                                   | gas<br><b>(1)</b> | Points based<br>on atom<br>economy /<br>renewable<br>fuels alone |      |
|          | Short chain alkanes / lighter fractions ar more useful products                                                              | e <b>(1)</b>      | Easier to transport / store                                      |      |
|          | Demand is greater for shorter chain alka / lighter fractions / smaller molecules OF converts surplus of low demand fractions | ?                 |                                                                  |      |
|          |                                                                                                                              | (1)               | Short chain                                                      |      |
|          | It produces ethane / short chain alkenes making poly(ethene) / ethane-1,2-diol / ethanol / plastics / polymers               | for <b>(1)</b>    | alkenes / ethene more useful alone                               |      |
|          | Smaller alkanes give less pollution/burn more efficiently                                                                    | (1)               |                                                                  |      |
|          | Recycles waste products                                                                                                      | (1)               | Recycles alone                                                   |      |
|          | As a source of hydrogen                                                                                                      | (1)               |                                                                  |      |
|          | NB examiners need to look carefully at to vowel in the middle of alkane / alkene / ethane / ethene if not clear do not give  |                   |                                                                  |      |

## **TOTAL FOR SECTION B = 60**

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code US034330 January 2013

For more information on Edexcel qualifications, please visit our website <a href="https://www.edexcel.com">www.edexcel.com</a>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE





